56 research outputs found

    Extreme Data Mining: Inference from Small Datasets

    Get PDF
    Neural networks have been applied successfully in many fields. However, satisfactory results can only be found under large sample conditions. When it comes to small training sets, the performance may not be so good, or the learning task can even not be accomplished. This deficiency limits the applications of neural network severely. The main reason why small datasets cannot provide enough information is that there exist gaps between samples, even the domain of samples cannot be ensured. Several computational intelligence techniques have been proposed to overcome the limits of learning from small datasets. We have the following goals: i. To discuss the meaning of small in the context of inferring from small datasets. ii. To overview computational intelligence solutions for this problem. iii. To illustrate the introduced concepts with a real-life application

    Concept Drift Adaptation with Incremental–Decremental SVM

    Get PDF
    Data classification in streams where the underlying distribution changes over time is known to be difficult. This problem—known as concept drift detection—involves two aspects: (i) detecting the concept drift and (ii) adapting the classifier. Online training only considers the most recent samples; they form the so-called shifting window. Dynamic adaptation to concept drift is performed by varying the width of the window. Defining an online Support Vector Machine (SVM) classifier able to cope with concept drift by dynamically changing the window size and avoiding retraining from scratch is currently an open problem. We introduce the Adaptive Incremental–Decremental SVM (AIDSVM), a model that adjusts the shifting window width using the Hoeffding statistical test. We evaluate AIDSVM performance on both synthetic and real-world drift datasets. Experiments show a significant accuracy improvement when encountering concept drift, compared with similar drift detection models defined in the literature. The AIDSVM is efficient, since it is not retrained from scratch after the shifting window slides

    Semiotic Aggregation in Deep Learning

    Get PDF
    Convolutional neural networks utilize a hierarchy of neural network layers. The statistical aspects of information concentration in successive layers can bring an insight into the feature abstraction process. We analyze the saliency maps of these layers from the perspective of semiotics, also known as the study of signs and sign-using behavior. In computational semiotics, this aggregation operation (known as superization) is accompanied by a decrease of spatial entropy: signs are aggregated into supersign. Using spatial entropy, we compute the information content of the saliency maps and study the superization processes which take place between successive layers of the network. In our experiments, we visualize the superization process and show how the obtained knowledge can be used to explain the neural decision model. In addition, we attempt to optimize the architecture of the neural model employing a semiotic greedy technique. To the extent of our knowledge, this is the first application of computational semiotics in the analysis and interpretation of deep neural networks

    Function Approximation with ARTMAP Architectures

    Get PDF
    We analyze function approximation (regression) capability of Fuzzy ARTMAP (FAM) architectures - well-known incremental learning neural networks. We focus especially on the universal approximation property. In our experiments, we compare the regression performance of FAM networks with other standard neural models. It is the first time that ARTMAP regression is overviewed, both from theoretical and practical points of view

    Automated Morgan Keenan Classification of Observed Stellar Spectra Collected by the Sloan Digital Sky Survey Using a Single Classifier

    Get PDF
    The classification of stellar spectra is a fundamental task in stellar astrophysics. Stellar spectra from the Sloan Digital Sky Survey are applied to standard classification methods, k-nearest neighbors and random forest, to automatically classify the spectra. Stellar spectra are high dimensional data and the dimensionality is reduced using astronomical knowledge because classifiers work in low dimensional space. These methods are utilized to classify the stellar spectra into a complete Morgan Keenan classification (spectral and luminosity) using a single classifier. The motion of stars (radial velocity) causes machine-learning complications through the feature matrix when classifying stellar spectra. Due to the nature of stellar classification and radial velocity, these complications cannot be corrected. However, classifiers utilizing a large set of observed stellar spectra, which has had astronomical-specific feature selection applied, performed computationally fast with extremely high accuracy

    Learning in Convolutional Neural Networks Accelerated by Transfer Entropy

    Get PDF
    Recently, there is a growing interest in applying Transfer Entropy (TE) in quantifying the effective connectivity between artificial neurons. In a feedforward network, the TE can be used to quantify the relationships between neuron output pairs located in different layers. Our focus is on how to include the TE in the learning mechanisms of a Convolutional Neural Network (CNN) architecture. We introduce a novel training mechanism for CNN architectures which integrates the TE feedback connections. Adding the TE feedback parameter accelerates the training process, as fewer epochs are needed. On the flip side, it adds computational overhead to each epoch. According to our experiments on CNN classifiers, to achieve a reasonable computational overhead–accuracy trade-off, it is efficient to consider only the inter-neural information transfer of the neuron pairs between the last two fully connected layers. The TE acts as a smoothing factor, generating stability and becoming active only periodically, not after processing each input sample. Therefore, we can consider the TE is in our model a slowly changing meta-parameter

    Asymptotically Unbiased Estimator of the Informational Energy with kNN

    Get PDF
    Motivated by machine learning applications (e.g., classification, function approximation, feature extraction), in previous work, we have introduced a non- parametric estimator of Onicescu’s informational energy. Our method was based on the k-th nearest neighbor distances between the n sample points, where k is a fixed positive integer. In the present contribution, we discuss mathematical properties of this estimator. We show that our estimator is asymptotically unbiased and consistent. We provide further experimental results which illustrate the convergence of the estimator for standard distributions

    A Novel Fuzzy ARTMAP Architecture with Adaptive FeatureWeights based on Onicescu’s Informational Energy

    Get PDF
    Fuzzy ARTMAP with Relevance factor (FAMR) is a Fuzzy ARTMAP (FAM) neural architecture with the following property: Each training pair has a relevance factor assigned to it, proportional to the importance of that pair during the learning phase. Using a relevance factor adds more flexibility to the training phase, allowing ranking of sample pairs according to the confidence we have in the information source or in the pattern itself. We introduce a novel FAMR architecture: FAMR with Feature Weighting (FAMRFW). In the first stage, the training data features are weighted. In our experiments, we use a feature weighting method based on Onicescu’s informational energy (IE). In the second stage, the obtained weights are used to improve FAMRFW training. The effect of this approach is that category dimensions in the direction of relevant features are decreased, whereas category dimensions in the direction of non-relevant feature are increased. Experimental results, performed on several benchmarks, show that feature weighting can improve the classification performance of the general FAMR algorithm

    Weighted Incremental–Decremental Support Vector Machines for concept drift with shifting window

    Get PDF
    We study the problem of learning the data samples’ distribution as it changes in time. This change, known as concept drift, complicates the task of training a model, as the predictions become less and less accurate. It is known that Support Vector Machines (SVMs) can learn weighted input instances and that they can also be trained online (incremental–decremental learning). Combining these two SVM properties, the open problem is to define an online SVM concept drift model with shifting weighted window. The classic SVM model should be retrained from scratch after each window shift. We introduce the Weighted Incremental–Decremental SVM (WIDSVM), a generalization of the incremental–decremental SVM for shifting windows. WIDSVM is capable of learning from data streams with concept drift, using the weighted shifting window technique. The soft margin constrained optimization problem imposed on the shifting window is reduced to an incremental–decremental SVM. At each window shift, we determine the exact conditions for vector migration during the incremental–decremental process. We perform experiments on artificial and real-world concept drift datasets; they show that the classification accuracy of WIDSVM significantly improves compared to a SVM with no shifting window. The WIDSVM training phase is fast, since it does not retrain from scratch after each window shift

    Function Approximation with ARTMAP Architectures

    Get PDF
    We analyze function approximation (regression) capability of Fuzzy ARTMAP (FAM) architectures - well-known incremental learning neural networks. We focus especially on the universal approximation property. In our experiments, we compare the regression performance of FAM networks with other standard neural models. It is the first time that ARTMAP regression is overviewed, both from theoretical and practical points of view
    • …
    corecore